Supercalender Performance Improvement by Process Optimization

By:

<table>
<thead>
<tr>
<th>D K Singhal</th>
<th>M S Gaur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chandpur Enterprises Ltd.,</td>
<td>Techais</td>
</tr>
<tr>
<td>Sargam Theatre, Chandpur-246725</td>
<td>D-121-122,</td>
</tr>
<tr>
<td>Dist. Bijnor, (U.P.), INDIA</td>
<td>Industrial Area Phase VII,</td>
</tr>
<tr>
<td>deveshksinghal@rediffmail.com</td>
<td>Mohali, Chandigarh-160055</td>
</tr>
<tr>
<td>deveshksinghal@gmail.com</td>
<td>m_s_gaur@yahoo.co.in</td>
</tr>
</tbody>
</table>
Conventional Supercalender

- Type: Typical 12 roll Supercalender
- Make: ECK Haubold
- Unwind: Single flat disc water cooled
- 11 intermediate paper rolls
- Dyno-drive center winder
All chilled rolls were hard chrome plated and superfinished.

- **Hard chrome plating:**
 - No specific benefit in terms of roll hardness
 - Chemical properties of surface greatly altered
 - No development of a thin layer of corrosion products on roll surface
 - No corrosion during a shut for a couple of days
 - Better surface finish possible after hard chrome plating.
Upgrades During Installation

- Installation of hydraulic accumulator.

- Hydraulic Accumulator:
 - Basically a pressurized variable volume storage device
 - Stores hydraulic oil at desired pressure
 - Reduced electricity consumption
 - Low hydraulic oil temperature
 - Better hydraulic cylinder life
Chilled Roll Superfinishing

- Done by Modinagar Rolls Ltd., by their specially developed method (Mod-Finish) for hard chrome rolls.
- Surface smoothness achieved: approx. 0.25Ra.
Initial Problems

- Low speed: 60-70 mpm
- Low production capacity
- Frequent joints
- Unstable gloss
- Time consuming reel change
- Time consuming tail feeding
Installation of Proximity Sensor

- A proximity sensor was mounted on to the shaft of a paper roll near key
- The reset button of the counter was deactivated.
- The difference between shift readings indicated roll revolutions
- More difference ~ More paper length
Installation of Proximity Sensor

- A healthy competition started between operators
- Within a few of weeks, production increased by 2.5 times

* This technique works well if the operators are too cautious to speedup the machine.
On-machine Gloss Indication

- Variation in gloss in machine direction.
- Inconsistent nip loading.
- Analog pressure gauges difficult to read accurately
- Due to manual control of loading.
- It takes time to draw a sample and check for gloss.
Lighting System Improvement

- Tubelights were fitted
- Operators can see the reflection
- Visual information about the gloss.
Unwind

- Original: Disk brake, water cooled.
- Larger brake area, low air pressure for braking, poor control.
- Poor response at low speeds, particularly at startup.
Unwind Modification

- Disk brake was replaced with a locally fabricated drum brake.
- Optimized diameter pneumatic cylinder for better breaking control.
Winder

- Original Winder-
 - Center winder
 - Dyno-drives based tension control
 - Paper slippage between layers
 - Poor winding
 - Frequent breaks
Winder Modification

- Modified Winder-
 - Surface winder
 - Gear coupled DC Motor
 - DC motor was replaced by AC motor later on.
 - Gear box was replaced by V-Belt drive
 - Main calender drive and pope reel drive synchronized.
Winder Modification

- **Results:**
 - Excellent winding
 - No joints at winder
 - Uniform tension profile
 - Reduced side trimings
Removal of Paper Rolls

- Normal Operation Schematic
 - Paper rolls used for web cooling
 - Soft rolls life improvement

- Problems Faced:
 - Time consuming reel change
 - Time consuming tail feeding
 - Increased tail feeding losses
Removal of Paper Rolls

- Advantages:
 - Reduced reel changing time
 - Reduced tail feeding time
 - Reduced tail feeding losses
 - Improved runnability
Soft Roll Performance

- Problems:
 - Frequent failures immediately after a startup.
 - Roll slicing ▶ Roll became unusable
 - Often a deep cut desirable.
 - Roll life was very low.
 - Uneven nip profile.
Improving in Soft Roll Performance

- Warming up before startup
- Installation of in-house grinder
- Uni-run operation
- Frequent sponge humidification
- Climatic improvements
Roll Material

<table>
<thead>
<tr>
<th>Feature</th>
<th>Paper Rolls</th>
<th>Glosvax (Cotton) Rolls</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Cotton / Wool / Linen</td>
<td>Cotton + Wool</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Die Cutting / Pressing</td>
<td>Carding / Caking</td>
<td>Better interlocking and hence low possibility of slicing.</td>
</tr>
<tr>
<td>Assembly</td>
<td>Fast Pressing</td>
<td>Slow Pressing</td>
<td>Better interlocking and hence low possibility of slicing.</td>
</tr>
<tr>
<td>Finishing</td>
<td>Turning / Grinding</td>
<td>Turning / Polishing</td>
<td>Better surface of roll and hence better gloss.</td>
</tr>
<tr>
<td>Hardness</td>
<td>80-92 Shore D</td>
<td>72-82 Shore D</td>
<td>Increased nip width resulting in better results even at high speed operation.</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Low</td>
<td>High</td>
<td>Better resistance to score marks</td>
</tr>
<tr>
<td>Mark Resistance</td>
<td>Moderate / Low</td>
<td>Excellent / Moderate</td>
<td>Frequent grinding is avoided.</td>
</tr>
<tr>
<td>Cut Depth</td>
<td>Low Depth</td>
<td>Deep Cut</td>
<td>Grinding time is reduced significantly.</td>
</tr>
<tr>
<td>Grinding Frequency</td>
<td>Very High</td>
<td>Moderate / Low</td>
<td>Lesser downtime for fewer roll changes.</td>
</tr>
<tr>
<td>Costing</td>
<td>Moderate</td>
<td>Economical</td>
<td></td>
</tr>
</tbody>
</table>
Installation of In-house Grinder

- Roll grinding done at a local workshop.
- Grinding cost- not a big issue.
- Transit in tractor trolley, prone to roll damage.
- A new grinder (double chuck type) was purchased & installed.
- Quality of grinding was also improved significantly.
Slicing

- Cotton rolls rotation in clockwise or anticlockwise possible.
- In case roll position change, sometimes direction of rotation reverses.
- Reverse rotation
 - Slicing.
Uni-run Operation

- To avoid slicing, rolls were marked for Uni-run operation.
- Slicing problem eliminated.
Roll Cotton Behaviour

- **Cotton:**
 - Absorbs moisture in high humidity environment and vice versa.
 - Around roll area, temperature is higher, and so relative humidity is lower.
 - So, cotton rolls tend to release moisture during operation.
 - Deterioration of cotton rolls speeds up if the moisture is lower than a critical level.
 - This results in roll failure (burn out).
Frequent Sponge Humidification

- Frequent wetting the roll surface, particularly in the dry weather (RH< 50%) helps a lot by-
 - Maintaining desired moisture in the roll cotton.
 - Lowering down the temperature of roll.
 - Improving the flexibility of roll, thus better nip.
 - Reduced CD caliper variation.
 - Increase roll life between grindings.
Frequent Sponge Humidification

- Initial trials of sponge humidification used water along with detergents e.g. Nirma, Wheel, Ezee and shampoos like sunsilk etc.
- Use of **Techzyme** was found very useful.
Frequent Sponge Humidification

- Advantages:
 - Grinding to grinding span improved.
 - CD caliper variation reduced significantly.
 - Much better reel winding.
 - Improvement in roll life.
Localized Roll Burn Out

- More roll failures during dry weather rather than during summer.
- Often, such failures required deep cuts.
Climatic Improvements

- Sponge humidification is good technique, but, it needs loss of production for 4-5 minutes after say every reel.
- Sometimes, operators may tend to skip it a couple of times.
- So, we needed to have a better solution.
Climatic Improvements

- Use of air cooler was planned.
- Three coolers were installed at one side of supercalendar.
- Objects were:
 - To increase the humidity.
 - To reduce the climatic temperature.
 - To reduce the dependency on sponge humidification.
Climatic Improvements

- Definite advantages were observed.
- Over a period of 4 months, there were at least 6 incidences when no roll had been changed during 7 consecutive days.
- Reel winding improved further.
- Physical work (sponge humidification) by operators was reduced.
Overall Results

- Better runnability
- Better reel winding
- Reduced trim losses
- Reduced joints
- Reduced gloss variation
- Reduced caliper variation
- Reduced grindings per ton of paper
- Improved roll life
Overall Results

- And of course-
- Happier Customers…..!!
- Happier Operators……!!
- Happier Mill…………!!!
Any Questions?
Thank You.